
REGIONS OF INTEREST FOR ACCURATE OBJECT DETECTION 
 

P. Kapsalas, K. Rapantzikos, A. Sofou, Y. Avrithis 
 

Image Video and Multimedia Systems Laboratory, 
Department of Electrical & Computer Engineering, 

Athens 15780, Greece 
{pkaps, rap, natasa, iavr}@image.ntua.gr 

 
 

Abstract  
In this paper we propose an object detection approach that 
extracts a limited number of candidate local regions to guide 
the detection process. The basic idea of the approach is that 
object location can be determined by clustering points of 
interest and hierarchically forming candidate regions 
according to similarity and spatial proximity predicates. 
Statistical validation shows that the method is robust across 
a substantial range of content diversity while its response 
seems to be comparable to other state of the art object 
detectors.  

 
1. INTRODUCTION 

 
The rapidly expanding research and analysis on object 
detection and recognition imposes the use of reliable 
machine vision systems. Recent object detection approaches 
fuse detection results obtained by robust part detectors, thus 
eliminating noise artifacts and resolving occlusion 
phenomena. However, object detection remains a 
challenging problem due to the wide range of variability in 
the monitoring conditions as well as to the diversities in 
scale, location, orientation (up-right, rotated), and pose that 
real objects adopt.  

The goal of an efficient object detector is the accurate 
determination of objects location, extent and shape. To 
efficiently approximate these parameters, there are many 
challenges that should be faced. These are mainly associated 
with the variability of poses and orientations that the object 
of interest can adopt. Monitoring parameters such as 
illumination conditions, camera movements, aliasing and 
camera specifications also correspond to issues that should 
be considered 

Through this section we provide a brief review of 
important existing object detection techniques in static 
images and video. However, a full review of the object 
detection literature is beyond the scope of this paper. In an 
effort to distinguish the existing techniques, we can classify 
them into four broad categories, with respect to the 
information that they consider. However, some overlapping 
between categories can occur. 

Bottom-Up Feature-Based Approaches aim to find 
structural features that exist even when the pose, viewpoint, 
or lighting conditions vary, and then use them in the 
detection procedure. Davis & Sharma [1] proposed a 
contour-based method to detect humans in widely varying 
thermal images. At first, regions of interest (ROIs) are 
determined through statistical background subtraction. 
Subsequently, gradient information within each region is 
extracted and used to form a contour saliency map. 
Morphological operations are also employed to fill broken 
boundaries. The combination of gradient and contour-based 
features is an additional class of descriptors that has been 
extensively used. Their efficacy relies on the robustness of 
gradient-based descriptors to illumination changes and noise 
induction. Such features are frequently selected to represent 
objects boundaries.  

The Scale Invariant Feature Transform (SIFT) and 
shape context have been extensively used for person/face 
localization [2], [3], [4], [5]. SIFT was initially proposed by 
Lowe [2], [3] and works by combining a scale invariant 
region detector and a descriptor based on the gradient 
distribution in the detected regions. Geometric histogram [4] 
and shape context [5] implement the same idea and are very 
similar to SIFT. In particular, shape context is identical to 
SIFT descriptors but is based on edges extracted by the 
Canny [6] detector where the location is quantized into nine 
bins of a log-polar coordinate system.  

Another approach also based on gradient orientation 
distributions is proposed by Dalal & Triggs [7]. A dense 
grid of Histograms of Oriented Gradients (HoG) is 
considered and computed over blocks of specific extent. 
This representation has proved to be powerful enough to 
classify humans using a linear SVM. However, it can only 
process images of limited dimensions and at specific frame 
rates using a very sparse scanning methodology that 
evaluates roughly 800 detection windows per image. Zhu et 
al. [8] speed-up Dalal’s approach by increasing the number 
of detection windows. Thus, they combine a cascade of 
rejectors approach with the HoG features. To overcome fast 
rejection problems, they induce the use of fixed size blocks. 



 

They also use a much larger set of blocks varying in sizes, 
locations and aspect ratios. The best blocks suited for 
detection are selected via an AdaBoost relying on a rejector-
based cascade. Visual attention has also been used in several 
object detection approaches in order to account for motion 
information and conscious search in images. Rapantzikos 
and Tsapatsoulis [9] have built a robust method of 
enhancing the accuracy of face detection schemes through a 
visual attention architecture.  

Top-Down Knowledge-Based Methods are rule-based 
approaches that encode knowledge of what constitutes an 
object of interest. Knowledge-based methods have the 
fundamental advantage of attaining to reduce false positive 
instances of detection by eliminating them through the 
verification step. Motion characteristics provide important 
information for both determining regions of interest and 
assessing whether an object’s motion features resemble to 
human motion [10], [11],[12]. Viola and Jones [11] have 
proposed a state of the art human detection approach, which 
considers prior knowledge on the person’s motion and 
appearance. No separate mechanisms of tracking, 
segmentation and alignment are supported. The system 
works by simply selecting the feature set, the scale of the 
training data and the scales used for detection. The training 
process uses AdaBoost to select a subset of features and 
construct the classifier. The classifier consists of a linear 
combination of the selected features. Viola and Jones [13] 
have also proposed a cascade of classifiers architecture to 
reduce the computational cost.  

Template Matching Methods use standard patterns of 
objects/object parts to describe the object globally or as 
distinct parts. Correlations between the input image and 
patterns subsequently computed for detection. Gavrila [12] 
propose a human detection scheme that segments 
foreground regions and extracts the boundary. Then the 
algorithm searches for humans in the image by matching 
edge features to a database of templates of human 
silhouettes. The matching is realized by computing the 
average Chamfer distance between the template and the 
edge map of the target image area. Wren et al. [14] describe 
a top-down person detector based on template-matching. 
However, this approach requires domain specific scene 
analysis. Castillo and Chang use fast template matching as a 
focus of attention [14] and the algorithm proceeds by 
discarding locations where there is no silhouette that 
matches the human body. 

In the appearance-based methods, the models (or 
templates) are learned from a set of training images. These 
learned models are then used for detection. Appearance-
based methods [16] rely on techniques from statistical 
analysis and machine learning to find the relevant 
characteristics of images containing objects. The learned 
characteristics are in the form of distribution models or 
discriminant functions that are consequently used for 
detection. 

In contrast to all techniques described above, 
Integration of Parts detectors fuses the detection results 
derived by robust part-based detectors. Forsyth and Fleck 
[17] introduced body plans for finding people in general 
configurations. Ioffe and Forsyth [18] then assembled body 
parts with projected classifiers or sampling. However, the 
aforementioned methods rely on simplistic body part 
detectors. The employed representation models body parts 
as bar shaped segments. An improvement on the modeling 
of body part relations is given by Mikolajczyk et al. [19], 
where local orientation position features are extracted by 
gradient and Laplacian based filters. The spatial layout of 
the features, together with their probabilistic co-occurrence 
captures the appearance of the parts and their 
distinctiveness. The features with the highest co-occurrence 
probabilities are learnt using AdaBoost and the detected 
parts are combined with a joint probabilistic body model. 
The features deployed in [19] have proven to describe the 
shape better than prior descriptors. Parts-based object 
detection and recognition systems were further extended in 
[20] and [21], where several methodologies have been 
developed based on either bottom-up or top-down 
considerations. Bottom-up approaches were used to group 
together body parts found throughout a sequence while in 
top-down approaches, human models are built automatically 
from convenient poses. The system in [20] has been also 
used to track humans by detecting the learned models in 
each frame.  

The majority of object detection methodologies 
approach the localization issue through exhaustive search 
over the image. Thus, false positive artifacts are eliminated 
at the cost of distorting the object extent and shape. In this 
paper we try to tackle with the localization problem through 
considering a set of interest points describing regions that 
represent transition areas with high probability. These points 
are subsequently considered to guide the overall detection 
process. The basic idea is that interest points are located on 
objects boundaries or on areas of abrupt changes on the 
background structure. 

In practice we determine interest points’ locations 
through Harris corner detector [22] thus enhancing points 
characterized by high gradient values along all directions. 
Points grouping (clustering) takes place by measuring 
distances on low level visual descriptors. The derived 
clusters are considered as local image structures 
representing the content of the local neighborhood.  

Structuring the paper, section 2 presents a brief 
overview of the system’s functionality while sub-sections 
2.1 through 2.4 analyze the functionality provided by each 
distinct module. The experimental setup and the results are 
presented and evaluated in sub-sections 3.1 and 3.2 
respectively. System’s performance issues are also 
considered in terms of both statistical and visual analysis. 
Finally, section 4 draws the conclusions and discusses drifts 
of further research. 

 



 

2. PROPOSED FRAMEWORK 
 
The proposed methodology approaches the problem of 
object detection by initially extracting distinctive invariant 
features from images that are in turn used for region 
grouping. The features are extracted from local keypoints 
derived by the Harris corner detector [7] and are associated 
with point locations that have large gradients in all 
directions at a predetermined scale. The selected features 
reflect color and texture information evaluated on local 
regions and have proven to be invariant across a substantial 
range of image deformations and illustration conditions. 
Apart from considering the distributions of color and 
intensity metrics the employed features also account for 
spatial dependencies of intensity levels.  

After the feature points have been determined they are 
grouped via an unsupervised clustering approach. An 
efficient clustering approach should be characterized by 
accurate discovery of clusters of arbitrary shape (shape of 
clusters in spatial databases may be spherical, drawn-out, 
linear, elongated etc). Moreover, feature points clustering 
should provide good efficiency when applied on large 
databases (i.e. on databases of significantly more than just a 
few thousand objects) while it should also be invariant to 
prior knowledge on the application data. 

In our approach localization of objects initially involves 
formation of neighborhoods of clusters according to spatial 
proximity distance. Subsequently, the clusters belonging to 
each neighborhood are considered in combinations to check 
the objects occurrence at each specific location. The final 
step involves the use of a cascade of boosted classifiers.  

The overall functionality supported in our method is 
illustrated in Fig. 1. 
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Figure 1: Object detection system in diagram form 
 
2.1. Interest Point Extraction and Local Features 
 
Our detection methodology initially considers the point 
locations extracted by the Harris corner detector [22]. These 
are determined by evaluating the autocorrelation function of 
the 2D visual signal (image) within a spatial region of 
predetermined extent. The autocorrelation function measures 
the local changes of the patches shifted by a small amount in 
different directions. Given a shift (∆x, ∆y) and a point (x, y), 
the autocorrelation function is defined as, 

( ) ( ) ( ) 2
, ,i i i i

W
c x, y I x y I x ∆x y ∆y= − + +  ∑    (1), 

where I denotes the image function and (xi, yi) are the points 
in the window W (Gaussian) centred on (x, y). The shifted 
image is approximated by a Taylor expansion truncated to 
the first order terms. 

( ) ( ) ( ) ( )i i i i x i i y i i

x
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   (2) 

Substituting (1) into (2) we get, 

( ) [ ] ( ) x
c x, y x y C x, y

y
∆ = ∆ ∆  ∆ 

                            (3), 

where matrix C(x,y) captures the intensity structure of the 
local neighborhood.  

Let λ1, λ2 be the eigen-values of matrix C(x,y). The 
eigen-values form a rotationally invariant description. The 
presence of a key-point depends on the relation between λ1 
and λ2. Low levels of λ1, λ2 are associated with flat 
autocorrelation function that corresponds to an image area 
with no abrupt change in any direction. If only one of the 
eigen-values is high and the other is low, that implies a ridge 
shaped auto-correlation function. Such ridges in the auto-
correlation function are associated to the occurrence of 
transition boundaries between different surfaces. High levels 
of λ1, λ2 are reflected to sharp peaks on the autocorrelation 
function and then shifts in any direction will result in a 
significant increase that indicates a corner.  

Point detection is followed by spatial filtering to 
eliminate the density of feature points within local 
neighborhoods. Equation (4) provides a mathematical 
description of the points filtering operation. Set S 
corresponds to the set of locations obtained after an initial 
selection of interest points. 

{ }S : ,p H p q q Hδ= ∈ − < ∀ ∈                      (4), 
where p denotes the point under consideration, H the set of 
points obtained by the Harris corner detector and δ a 
parameter denoting the radius of the area being checked. 
The size of δ is chosen to be significantly smaller than the 
patch considered for extracting visual descriptors. The 
underlying idea of selecting the value of δ is to suppress the 
number of points co-occurring in the same spatial 
neighborhood while also enabling accurate representation of 
local image structures. 

Keypoints localization is followed by a features 
extraction procedure. At this step, we consider local square 
patches of limited extent (significantly larger than δ) and 
evaluate colour and texture descriptors to represent local 
areas. Thus, the three most significant components of 
dominant colour are selected to reflect the local colour 
content while a statistical descriptor of texture was used to 
estimate texture variations within images sub-regions. More 
specifically, at each keypoint location the gray-level co-
occurrence matrix is extracted and some features expressing 
the contrast and homogeneity, within these areas, are 
evaluated. The co-occurrence matrix displacement vector is 
selected so as to represent the spatial arrangement of 



 

intensity levels while suppressing the induction of intensity 
peaks associated to noise occurrence. 

The texture features considered through this work are 
the Harralick descriptors of texture and they actually 
measure the randomness of gray levels distribution. The 
mathematical expressions of these features are provided 
through the subsequent equations. 

( )2
1

i j

Energy : F P i, j=∑∑  

( ) ( )( ): , log ,2
i j

Entropy F P i j P i j= −∑∑  

( )
3

i j

P i, j
Homogeneity : F

1 i j
=

+ −∑∑  and 

( ) ( )2
4

i j
Contrast : F i j P i, j= − −∑∑ , 

Where P(i,j) denotes the probability of finding pixels with 
intensity values i, j at spatial arrangements similar to the one 
defined by the displacement vector. 

Feature normalization is also an issue of great concern 
as it influences the classifiers performance. In this work, 
L2square-normalization is considered for normalizing the 
input vectors. The same distance metric is also used by the 
clustering algorithm [23] for discriminating clusters in the 
feature space.  

 
2.2. Interest Point Clustering 
 
The clustering approach groups feature points according to 
similarity and spatial proximity criteria. In practice, the 
employed algorithm called “Density Based Algorithm for 
Discovering Clusters in Spatial Databases with Noise” 
(DBScan) [23] has proven to be powerful enough to 
discover clusters of arbitrary shape while requiring minimal 
domain knowledge. The algorithm considers density of 
feature points as the key aspect for forming meaningful 
classes in the feature space. Adaptation of the clustering 
algorithm requires modifying the maximum neighbourhood 
radius (Eps) and the minimum number of points (MinPts) in 
an Eps-neighborhood of that point.  

The functionality of the DBScan algorithm can be 
summarized in the following steps. 

1. Select arbitrarily a p point in the feature space. 
2. Select all points that are density reachable from p 

w.r.t Eps and MinPts. 
3. If p is a core point, a cluster is formed. 
4. If p is a border point, no points are density reachable 

from p and DBScan visits the next point of the 
database.  

5. Continue the process until all points have been 
processed. 

Where the terms density reachable and directly-density 
reachable are associated with the radius of the point’s Eps-
neighborhood and the minimum number of points (MinPts) 
in this neighborhood [23]. 

After the clusters have been formed, they are examined 
according to spatial proximity criteria to form spatial 
neighborhoods in the image plane. The clusters within each 
neighborhood are subsequently checked in combinations to 
derive candidate regions. The latter are selected to provide 
local area description and are considered for feature 
representation. Figure 2 summarizes the operations deployed 
throughout our methodology: 

 

  
(a)    (b) 

   

   
(c)   (d) 

Figure 2: (a) Points of interest (marked in red), (b) Clusters derived after 
applying the DBScan (yellow rectangles enclosing interest points), (c) 
Neighborhoods of clusters on the image, (represented as blue ellipses), (d) 
candidate regions (enclosed in the light-green rectangles) 
 

As it can be observed the localization process initially 
involves the determination of neighbourhoods of clusters 
(represented by blue-coloured ellipses in Fig. 2 (c)) and at 
the next step, the clusters contained within each 
neighbourhood are considered in combinations to obtain the 
candidate regions (light green rectangles in figure 2(d)). 

 
2.3. Feature Extraction 
 
The feature extraction approach is based on evaluating well-
normalized local features of image gradient orientations in a 
dense grid [7]. The basic idea is that local object appearance 
and shape can be characterized rather well by the 
distribution of local intensity gradients. The features are 
selected to be robust to illumination changes and imaging 
conditions and this is satisfied by encoding the objects 
boundary orientation and discarding information relative to 
the local colour or intensity. The histogram representation 
also enhances the method’s robustness to rotation changes.  

In practice, the implementation involves dividing the 
image window into small spatial regions (“cells”) and for 
each cell accumulating a local 1-D histogram of gradient 



 

directions or edge orientations over the pixels of the cell. 
More specifically, each pixel calculates a weighted vote for 
an edge orientation histogram channel based on the 
orientation of the gradient element centred on it. The votes 
are evaluated into orientation bins over cells. The combined 
histogram entries form the representation of possible object 
boundaries. The vote is a function of the gradient magnitude 
at the pixel (e.g. ( ) ( ) ( )2

, , , or ,I x y I x y I x y∇ ∇ ∇ ). For 
better invariance to illumination, shadowing, etc., it is also 
useful to apply contrast normalization of the local features 
before using them [7]. This can be done by accumulating a 
measure of local histogram “energy” over larger spatial 
regions (“blocks”) and using these results to normalize all 
cells within the block. The histogram of oriented gradients 
technique has the advantage of capturing characteristic edge 
or gradient structure information, which can represent local 
shape with an easily controllable degree of invariance to 
local geometric and photometric transformations. Thus, 
translations or rotations make little difference if they are 
much smaller than the local spatial or orientation bin size. 
An overview of the feature extraction approach is illustrated 
in Fig. 3.  
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Figure 3: Overview of the feature extraction approach.  
 
2.4. Classification 
 
For the candidate regions defined in 2.2, we evaluate the 
feature set representing the local image content and employ 
a cascade of boosted classifiers [13] at the verification stage. 
The underlying idea in this approach is that smaller and 
therefore more efficient boosted classifiers can be 
constructed in order to reject many of the negative areas 
while detecting almost all positive instances. Simpler 
classifiers are used to reject the majority of regions of 
interest before more complex classifiers are called upon to 
achieve low false positive rates. The overall form of the 
detection process is that of a degenerate decision tree, also 
called a “cascade” (see Fig. 4). 
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Figure 4: Schematic depiction of the detection cascade. A series of 
classifiers are applied to regions of interest. The initial classifier eliminates 
a large number of negative examples with very little processing. 
Subsequent layers eliminate additional negatives but require additional 
computation. 

 

3. EXPERIMENTAL RESULTS 
 
3.1 Experimental Setup 
 
Our detection framework is evaluated upon a broad range of 
images depicting the objects of interest in divert poses and 
at different illustration conditions so as to resemble the 
objects occurrence in real scenes. More specifically, the 
person detection framework considers a part of the 
PASCAL dataset as training set. The training set contains 
2380 positive instances and over 3500 negative examples. 
Based on this content we have trained three individual 
classifiers focusing on the full, upper and lower body 
respectively. However, in the experimental results presented 
in the following section only the full body classifier is 
considered so as the results to be comparable with other 
person detection approaches. The testing set used for 
evaluating the system’s performance contains over 800 
images depicting frontal or backward views of human 
bodies. Regarding the cars and airplanes content, we have 
produced training sets from the images provided by the 
PASCAL databases. More specifically, the car detector 
training set consists of approximately 1800 positive 
examples and around 2200 negatives while the test set 
involves 2200 images depicting both negative and positive 
examples. The corresponding training set for the airplanes 
contains 1100 positive images and 1300 negative examples. 
 

3.2 Results 
 
The testing framework initially validates the potential of our 
approach towards the effective determination of the 
topology and extent of objects of interest. A second 
objective is to statistically estimate the system’s efficiency 
in detecting objects of interest across a great diversity of 
monitoring conditions. Figs. 5(a)-(l) depict example of 
objects detected through our system. Visual inspection of 
the results indicates that the methodology is quite efficient 
in determining the objects of interest at their exact location 
and extent while eliminating the induction of false positives. 
More specifically, Fig. 5(a)-(d) illustrate the performance in 
detecting persons at variable scales and under different 
monitoring conditions. The visual results denote that our 
method’s performance is comparable to other state of the art 
object detectors. Moreover, its response is closely related to 
the discriminability provided by the feature set that is used 
to represent the objects. The robustness against scale 
changes and its efficacy at suppressing noise artifacts is 
strongly associated with the image representation. 

For the statistical evaluation a number of parameters are 
being varied and in each case the method’s response is 
evaluated in terms of its potential to detect objects of 
interest at their actual extent and location. 

Through the evaluation procedure, pixels that co-occur 
in both the detected and the ground truth image are 
considered as true positive (TP) instances of detection. 



 

Similarly, true negative (TN) instances correspond to image 
locations classified as background by both the detector and 
the ground truth, while false positive (FP) and false 
negatives (FN) are determined accordingly. In this paper, we 
consider the Receiver Operating Characteristic (ROC) 
curves as robust measures for evaluating the algorithmic 
performance. The ROC curves provide information on the 
tradeoff between the algorithms specificity (SP) and 
sensitivity (SE) [24].  

( ) P
TN

FPTN
TNSP

′
=

+
=                                              (6) 

Similarly the sensitivity value is defined as 

( ) P
TP

FNTP
TPSE =
+

=                                              (5) 

The statistical evaluation procedure involves 5-fold 
cross-validation to guarantee more robust estimation of 
response. Fig. 6, 7, 8 and 9 provide the statistical curves 
representing our approach performance. Through the ROC 
curves, we estimate the trade-off between the systems 
sensitivity and specificity when adjusting two important 
parameters of the overall detection methodology. In 
particular, Fig. 6 illustrates the systems response when the 
varying parameter is the cell size while Figs. 7 and 8 
illustrate performance variations when the DBScan 
parameters are modified.  

A brief study of the derived results illustrated in Fig. 5 
indicates that our object detection technique seems to be 
more robust when detecting cars while the performance of 
person and airplane detection follows.  Particularly, airplane 
detection seems to have significantly lower performance. 
This is closely related to the extent of the available training 
set as well as to the degree to which the training set 
represents real scenes of airplanes occurrence. The diversity 

of the testing set is also a significant factor affecting the 
overall performance. 

The effect of DBScan density parameter (Eps) and 
minimum points (MinPts) on detection performance is 
illustrated in figures 7 and 8 respectively. As it is observed, 
the detector seems to provide better results when applied to 
cars and to airplanes detection problem than humans. This 
can be explained by considering that people tend to be 
encountered at more complex scenes. This introduces 
limitations to the performance of the clustering module, 
which in turn affects the localization process.  

Further comparisons between Fig. 6, 7 and 8 indicate 
that the variation of the DBScan parameters leads to more 
abrupt changes on the performance curves than the cell size. 
This can be explained by considering that the region 
clustering guides the overall detection procedure. Further 
comparison between Figs. 7 and 8 indicates that 
performance is more sensitive to the MinPts parameter than 
Eps. This can be explained by considering that the minimum 
number of points affects the overall clustering procedure as 
it may lead to very large (very low) number of clusters, 
which in turn obstructs the determination of candidate 
regions. Experimental and statistical evaluation led to the 
assessment that the optimum values for the parameters being 
modified are: Eps=0.6, MinPts=4 and cell size=8x8. These 
values were also considered in the extraction of the ROC 
curves. 

Finally, Fig. 9 compares the performance of our 
approach to the approach presented in [7]. The comparison 
is based on the potential of the two methods to detect 
persons on the same dataset (INRIA). It can be observed, 
that our approach attains a slightly better response at the 
critical area while both approaches present almost the same 
performance for extreme values of specificity.  

 

                        
                                           (a)         (b)      (c)   (d) 

                         
                                    (e)         (f)       (g)   (h) 

                         
      (i)         (j)                                                     (k)                                (l) 
Figure 5: Results of our object detection system (a)-(d): Person detection under different scales and poses, (e)-(h) Detection of cars, (i) – (l): Detection of 
airplanes. 



 

It can also be seen that our detector is invariant to the 
image size as the overall procedure is guided by the 
determination of regions of interest.  

 

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1−Specificity

S
en

si
tiv

ity

Receiver Operating Characteristic Curves (ROC)

Cars
AirPlanes
Persons

 
Figure 6: ROC curves obtained by modifying the cell’s size. 
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Figure 7: ROC curves derived by modifying the DBScan Eps parameter. 
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Figure 8: ROC curves derived by modifying the DBScan MinPts 
parameter. 
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Figure 9: Comparative study of the performance curves representing our 
method with the approach described in [7]. 

4. CONCLUSIONS AND FUTURE WORK 
 
Throughout this paper we proposed an object detection 
approach and evaluated it in real scenes. The approach 
initially considers points of interest to determine locations 
close to boundaries. Such points are then grouped according 
to similarity and spatial proximity criteria. Feature points 
grouping takes place through an unsupervised clustering 
approach across a large range of domains (generic detector). 
The overall localization problem is achieved by forming 
neighborhoods of clusters. The clusters belonging to each 
neighborhood are checked in combinations to form 
candidate regions and in turn to assess the exact location of 
object’s occurrence. 

The response is estimated in terms of both visual and 
statistical evaluation. The test sets are produced so as to 
depict objects at variable scales and poses. Visual inspection 
illustrated that the proposed methodology provides accurate 
determination of the object location and extent. Statistical 
evaluation also verified that the approach has a performance 
that is comparable to state of the art object detectors. The 
overall approach has no limitations related to the image size 
and the object position.  

Although our detection methodology provides quite 
accurate results, there is still room for further optimization. 
One of our initial objectives is to evaluate the method’s 
efficiency in terms of detecting objects of interest on other 
datasets. The TRECVID content is a possible data set for 
comparisons to other detectors although it does not contain 
local information in its ground truth. A future direction is 
the investigation of alternative features (e. g Haar features). 
The overall detection procedure could also be strengthened 
by using contour-based information to guide grouping of 
clusters. 
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